

[Data Science für Ingenieure]

	Formale Angaben zum Modul
Studiengang	Studienrichtung
Elektrotechnik	Automation

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Data Science für	Deutsch/Englisch		1	Prof. DrIng. Christian
Ingenieure				Kuhn
(Data Science for				
Engineers)				

Verortung des Moduls im Studienverlauf			
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer
5, 6		Wahlmodul	1

Eingesetzte Lehr- und Prüfungsformen		
Lehrformen	Vorlesung, Übung, Labor	
Lehrmethoden	Lehrvortrag, Diskussion, Laborarbeit	

Prüfungsleistung	Benotung	Prüfungsumfang (in min)
Kombinierte Prüfung	Standardnoten	

Workload und ECTS				
Workload gesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in	ECTS-Punkte	
		h)		
150	55	95	5	

	Qualifikationsziele und Kompetenzen		
Fachkompetenz	Die Studierenden erfahren den Mehrwert von Daten durch deren Transformation und Auswertung sowie das Verständnis von detaillierten Problemstellungen und Lösungen in einem ingenieurwissenschaftlichen Kontext. Sie verstehen die Systeme ur Prozesse und sind in der Lage, exemplarisch Detailbetrachtungen von Datenauswertungen vorzunehmen. Die Studierenden verstehe das Zusammenspiel der verschiedenen Disziplinen in komplexen Zusammenhängen des Informationsmanagements. Vertiefung der Grundlagen durch praktische Übungen in Kleingrupp		
Methodenkompetenz	 Die Studierenden haben die Kompetenz erworben Typische Problemstellungen des Datenmanagements in ingenieurwissenschaftlichen Anwendungsfällen (Big Data) zu analysieren Einfache Konzepte von DataScience selbst umzusetzen (die Art und Weise, wie die Daten verarbeitet, aufbereitet und analysiert werden) in interdisziplinären Teams Umsetzungen von Problemstellungen und Lösungsansätzen zu diskutieren 		
Personale und Soziale Kompetenz	Durch dieses technisch profilierte Fachwissen erwerben die Studierenden die Kompetenz, selbstständig die Chancen und Risiken, die Big Data und Data Science einem Unternehmen bieten, zu bewerten und einzuschätzen. Die Studierenden können so das Unternehmen beim Erschließen und Bearbeiten dieses Themenfeldes beraten und die Realisierbarkeit im Unternehmen überprüfen.		

	Die Kompetenz im Team problemlösend zu arbeiten wird gefördert.
Übergreifende	Die Studierenden können technische Sachverhalte hinsichtlich des
Handlungskompetenz	Datenmanagement kritisch beobachten und Denk- und
	Lösungsansätze ableiten. Vor allem das
	Verständnis von übergreifenden Zusammenhängen und Prozessen
	im Kontext der generierten Daten wird gefördert.

Lerneinheiten und Inhalte			
Lehr- und Lerneinheiten	Präsenz	Selbststudium	
Data Science für Ingenieure	55	102	

Inhalte

- Daten, Informationen, Wissen, Informationsmanagement
- Grundlagen von Datenbanken (Wdh.), Data Mining, Data Streaming, CRISP
- Big Data und KI: Definition, Konzepte
- Business Intelligence, KPIs
- Statistische Verfahren & Algorithmen
- Machine Learning: Konzepte & Technologien
- Entscheidungsunterstützung, Prozesseingriff und Zieldefinition: Wartung, Qualität, Kosten, Nachhaltigkeit, Effizienz, Effektivität
- Anwendungen im Ingenieurwesen mit konkreten Beispielen (Reactive, Planned, Predictive, Prescriptive)
- Technologien, Methoden, Werkzeuge des Data Science
- Cloud-Anwendungen und Anbindung

Praktische Umsetzung des Erlernten in Übungen + Gruppendiskussion sowie einem Programmentwurf in Kleingruppen mit vorgegebener Aufgabenstellung.

Der praktische Charakter der Vorlesung wird durch Einsatz von typischen Werkzeugen des Data Science unterstützt (z.B. Matlab/Simulink, Mathematica, TensorFlow, KNIME, R,)

Besonderheiten und Voraussetzungen	
Besonderheiten	
Seminaristischer Ansatz mit Vorlesungsanteilen und intensiver Arbeit in Kleingruppen.	

Voraussetzungen	
Mathematik 1-3 (inkl. Statistik), Informatik 1 + 2, Softwaretechnik, WebEngineering & IoT	

Literatur

Data Science für Unternehmen, Foster Provost, MITP

Data Science – was ist das eigentlich?!: Algorithmen des maschinellen Lernens verständlich erklärt, Annalyn Ng, Springer

Künstliche Intelligenz: Mit Algorithmen zum wirtschaftlichen Erfolg, Peter Buxmann, Springer Bill Schmarzo, Big Data: Understanding How Data Powers Big Business, Wiley